A nonconfocal generator of involutive systems and Levy hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 26711
(http://iopscience.iop.org/0305-4470/26/3/028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:46

Please note that terms and conditions apply.

A non-confocal generator of involutive systems and Levy hierarchy

Zhang Baocai and Gu Zhuquan
Shijiashuang Railway Institute, Shijiashuang 050043, People`s Republic of China

Received 7 January 1992, in final form 17 September 1992

Abstract

In this paper, a new non-confocal generator of involutive systems is obtained, and the relation between it and Levy equation hierarchy is discussed. Furthermore, the representation of the solution for the Levy hierarchy is given.

1. Introduction

To find a new integrable system is an important subject [1,2] in soliton theory and integrability theory. However, whether a Hamiltonian system is completely integrable depends on whether the N -involutive system exists or not; almost all involutive systems already acquired by nonlinearized eigenvalue problems [3] are reduced to the so-called confocal involutive systems [4-14], whose generators are

$$
T_{k}=\sum_{\substack{j=1 \\ j \neq k}}^{N} \frac{\left(p_{k} q_{j}-p_{j} q_{k}\right)^{2}}{\alpha_{k}-\alpha_{j}} \quad k=1,2, \ldots, N
$$

A natural problem is to find non-confocal generators, so that essential new integrable system can be obtained.

In this paper, a new generator of the non-confocal involutive system \tilde{G}_{k} is found:

$$
\begin{equation*}
\tilde{G}_{k}=\sum_{\substack{j=1 \\ j \neq k}}^{N} \frac{\lambda_{k}^{2} p_{k}^{2} q_{j}^{2}+\lambda_{j}^{2} p_{j}^{2} q_{k}^{2}-\left(\lambda_{k}^{2}+\lambda_{j}^{2}\right) \dot{p}_{k} p_{j} q_{k} q_{j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}+\frac{\lambda_{j} p_{j}^{2} q_{k}^{2}-\lambda_{k} p_{k}^{2} q_{j}^{2}}{\lambda_{k}+\lambda_{j}} \tag{1.1}
\end{equation*}
$$

We prove that the Hamiltonian system $\left(R^{2 N}, \mathrm{~d} P \wedge \mathrm{~d} Q=\sum_{j=1}^{N} \mathrm{~d} p_{j} \wedge \mathrm{~d} q_{j}, H\right)$ is completely integrable in the Liouville sense, where

$$
\begin{equation*}
H=\frac{1}{2}\left(\left\langle A^{2} P, Q\right\rangle+\langle P, Q\rangle^{2}-\langle A Q, Q\rangle\langle P, Q\rangle-\langle A P, P\rangle\right) \tag{1.2}
\end{equation*}
$$

$A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right),\langle\cdot, \cdot\rangle$ are a standard inner product in $R^{N}, Q=$ $\left(q_{1}, q_{2}, \ldots, q_{N}\right)^{\mathrm{T}}, P=\left(p_{1}, p_{2}, \ldots, p_{N}\right)^{\mathrm{T}}$. Furthermore, the relation between the completely integrable Hamiltonian system $\left(R^{2 N}, \mathrm{~d} P \wedge \mathrm{~d} Q, H\right)$ and Levy equation hierarchy $[15,16]$ is discussed; the solutions of the Levy hierarchy are generated by the solutions of the completely integrable systems.

2. The non-confocal generator and the finite-dimensional complete integrable Hamiltonian systems [17]

Let $P=\left(p_{1}, p_{2}, \ldots, p_{N}\right)^{\mathrm{T}}$ and $Q=\left(q_{1}, q_{2}, \ldots, q_{N}\right)^{\mathrm{T}}$ be the basic coordinate functions in $R^{2 N}$. The Poisson bracket of two smooth functions F_{1} and F_{2} in the symplectic
space $\left(R^{2 N}, \mathrm{~d} P \wedge \mathrm{~d} Q=\sum_{j=1}^{N} \mathrm{~d} p_{j} \wedge \mathrm{~d} q_{j}\right)$ is defined as [17]

$$
\begin{equation*}
\left(F_{1}, F_{2}\right)=\sum_{j=1}^{N} \frac{\partial F_{1}}{\partial q_{j}} \frac{\partial F_{2}}{\partial p_{j}}-\frac{\partial F_{1}}{\partial p_{j}} \frac{\partial F_{2}}{\partial q_{j}} \tag{2.1}
\end{equation*}
$$

which satisfies the Leibnitz rule:

$$
\left(F_{1} F_{2}, F_{3}\right)=F_{1}\left(F_{2}, F_{3}\right)+F_{2}\left(F_{1}, F_{3}\right)
$$

where F_{3} is the smooth function in the symplectic space ($R^{2 N}, \mathrm{~d} P \wedge \mathrm{~d} Q$). F_{1} and F_{2} is called an involution if $\left(F_{1}, F_{2}\right)=0$.

The Hamiltonian canonical equation of the smooth function F in the symplectic space ($R^{2 N}, \mathrm{~d} P \wedge \mathrm{~d} Q$) is defined as [17]

$$
\left.\begin{array}{l}
p_{j t}=\left(p_{j}, F\right)=-\partial F / \partial q_{J} \tag{2.2}\\
q_{j t}=\left(q_{j}, F\right)=\partial F / \partial p_{j}
\end{array}\right\} \quad j=1,2, \ldots, N .
$$

Theorem 2.1. $\left(\tilde{G}_{n}, \tilde{G}_{k}\right)=0, \quad n, k=1,2, \ldots, N$.
Proof. Evidently $\left(\tilde{G}_{k}, \tilde{G}_{k}\right)=0$, let

$$
\begin{aligned}
& n \neq k \quad A_{k j}=\lambda_{j} p_{j}^{2} q_{k}^{2}-\lambda_{k} p_{k}^{2} q_{j}^{2} \\
& B_{k j}=\lambda_{k}^{2} p_{k}^{2} q_{j}^{2}+\lambda_{j}^{2} q_{k}^{2} p_{j}^{2}-\left(\lambda_{k}^{2}+\lambda_{j}^{2}\right) p_{k} q_{j} q_{k} p_{j} \\
& \sum_{n}^{\prime}=\sum_{\substack{i=1 \\
i \neq n}}^{N} \quad \sum_{k}^{\prime}=\sum_{\substack{j=1 \\
j \neq k}}^{N} \quad \sum_{j}^{\prime \prime}=\sum_{\substack{j=1 \\
j \neq k, n}}^{N} \quad \sum_{i}=\sum_{\substack{i=1 \\
i \neq n, k}}^{N}
\end{aligned}
$$

then

$$
\left(B_{k n}, B_{n k}\right)=0 \quad\left(A_{k n}, A_{n k}\right)=0
$$

and

$$
\begin{aligned}
\left(\tilde{G}_{n}, \tilde{G}_{k}\right)= & \left(\sum_{n}^{\prime}\left(\frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}+\frac{A_{n i}}{\lambda_{n}+\lambda_{i}}\right), \sum_{k}^{\prime}\left(\frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}+\frac{A_{k j}}{\lambda_{k}+\lambda_{j}}\right)\right) \\
= & \left(\sum_{n}^{\prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}, \sum_{k}^{\prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right)+\left(\sum_{n}^{\prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}-\sum_{k}^{\prime} \frac{A_{k j}}{\lambda_{k}+\lambda_{j}}\right) \\
& +\left(\sum_{n}^{\prime} \frac{A_{n i}}{\lambda_{n}+\lambda_{i}}, \sum_{k}^{\prime} \frac{A_{k j}}{\lambda_{k}+\lambda_{j}}\right)+\left(\sum_{n}^{\prime} \frac{A_{n i}}{\lambda_{n}+\lambda_{i}}, \sum_{k}^{\prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right) .
\end{aligned}
$$

Through direct calculation, we have

$$
\begin{aligned}
&\left(\sum_{n}^{\prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{t}^{2}}, \sum_{k}^{\prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right)=\left(\sum_{i}^{\prime \prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}, \sum_{j}^{\prime \prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right) \\
&+\left(\frac{B_{n k}}{\lambda_{n}^{2}-\lambda_{k}^{2}}, \sum_{j}^{\prime \prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right)+\left(\sum_{i}^{\prime \prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}, \frac{B_{k n}}{\lambda_{k}^{2}-\lambda_{n}^{2}}\right)=0 .
\end{aligned}
$$

Similarly
$\left(\sum_{n}^{\prime} \frac{B_{n i}}{\lambda_{n}^{2}-\lambda_{i}^{2}}, \sum_{k}^{\prime} \frac{A_{k j}}{\lambda_{k}+\lambda_{j}}\right)+\left(\sum_{n}^{\prime} \frac{A_{n i}}{\lambda_{n}+\lambda_{i}}, \sum_{k}^{\prime} \frac{A_{k j}}{\lambda_{k}+\lambda_{j}}\right)+\left(\sum_{n}^{\prime} \frac{A_{n i}}{\lambda_{n}+\lambda_{i}}, \sum_{k}^{\prime} \frac{B_{k j}}{\lambda_{k}^{2}-\lambda_{j}^{2}}\right)=0$.
Thus $\left(\tilde{G}_{n}, \tilde{G}_{k}\right)=0, \quad n, k=1,2, \ldots, N$.

Theorem 2.2. Set

$$
Q_{z}(\xi, \eta)=\left\langle\left(z I-A^{2}\right)^{-1} \xi, \eta\right\rangle=\sum_{k=1}^{N} \frac{\xi_{k} \eta_{k}}{z-\lambda_{k}^{2}}
$$

where I denotes the unit matrix, then the generalizing function of \tilde{G}_{k} is

$$
\sum_{k=1}^{N} \frac{\tilde{G}_{k}}{z-\lambda_{k}^{2}}=\left|\begin{array}{cc}
Q_{z}(A P, P) & Q_{z}(P, Q) \\
Q_{z}\left(A^{2} P, Q\right) & Q_{z}(A Q, Q)
\end{array}\right|
$$

Proof. Since

$$
Q_{z}(\xi, \eta)=\sum_{k=1}^{N} \frac{\xi_{k} \eta_{k}}{z-\lambda_{k}^{2}}
$$

and

$$
\frac{1}{\left(z-\lambda_{k}^{2}\right)\left(z-\lambda_{j}^{2}\right)}=\frac{1}{\left(z-\lambda_{k}^{2}\right)\left(\lambda_{k}^{2}-\lambda_{j}^{2}\right)}+\frac{1}{\left(z-\lambda_{\jmath}^{2}\right)\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right)}
$$

the required result is obtained through direct calculation.

Theorem 2.3. Let

$$
E_{k}=\lambda_{k}^{2} p_{k} q_{k}-\lambda_{k} p_{k}^{2}+\langle P, Q\rangle p_{k} q_{k}-\langle P, Q\rangle \lambda_{k} q_{k}^{2}-\tilde{G}_{k}
$$

then $\left\{E_{k}, k=1,2, \ldots, N\right\}$ is an N-involutive system.

Proof. Evidently $\left(E_{n}, E_{n}\right)=0$, let $n \neq k$, then through direct calculation, we have

$$
\begin{aligned}
& \left(-\lambda_{n} p_{n}^{2},\langle P, Q\rangle p_{k} q_{k}\right)+\left(\langle P, Q\rangle p_{n} q_{n},-\lambda_{k} p_{k}^{2}\right)+\left(-\lambda_{n} p_{n}^{2},-\tilde{G}_{k}\right)+\left(-\tilde{G}_{n},-\lambda_{k} p_{k}^{2}\right)=0 \\
& \begin{array}{l}
\left(-\lambda_{n} p_{n}^{2},-\langle P, Q\rangle \lambda_{k} q_{k}^{2}\right)+\left(-\langle P, Q\rangle \lambda_{n} q_{n}^{2},-\lambda_{k} p_{k}^{2}\right)+\left(\lambda_{n}^{2} p_{n} q_{n},-\tilde{G}_{k}\right)+\left(-\tilde{G}_{n}, \lambda_{k}^{2} p_{k} q_{k}\right)=0 \\
\begin{array}{l}
\left(\langle P, Q\rangle p_{n} q_{n},-\tilde{G}_{k}\right)+\left(-\tilde{G}_{n},\langle P, Q\rangle p_{k} q_{k}\right)=0
\end{array} \\
\begin{array}{l}
\left(\langle P, Q\rangle p_{n} q_{n},-\lambda_{k}\langle P, Q\rangle q_{k}^{2}\right)+\left(-\langle P, Q\rangle \lambda_{n} q_{n}^{2},\langle P, Q\rangle p_{k} q_{k}\right) \\
\\
\quad+\left(-\lambda_{n}\langle P, Q\rangle q_{n}^{2},-\tilde{G}_{k}\right)+\left(-\tilde{G}_{n},-\lambda_{k}\langle P, Q\rangle q_{k}^{2}\right)=0 \\
\begin{array}{ll}
\left(\langle P, Q\rangle, p_{k} q_{k}\right)=0 & \quad\left(p_{n} q_{n}, p_{k} q_{k}\right)=0 \\
\left(p_{n}^{2}, p_{k} q_{k}\right)=0 & \left(q_{n}^{2}, p_{k} q_{k}\right)=0 .
\end{array}
\end{array} .
\end{array} l
\end{aligned}
$$

From theorem 2.1, $\left(\tilde{G}_{n}, \tilde{G}_{k}\right)=0$, thus $\left(E_{n}, E_{k}\right)=0, \quad n, k=1,2, \ldots, N$.

Theorem 2.4. The Hamiltonian system (2.3) by definition (1.2) is finite-dimensional and completely integrable in the Liouville sense.

$$
\left.\begin{array}{l}
p_{j x}=-\partial H / \partial q_{j} \tag{2.3}\\
q_{j x}=\partial H / \partial p_{j}
\end{array}\right\} \quad j=1,2, \ldots, N .
$$

Proof. From theorem 2.3, $\left(E_{n}, E_{k}\right)=0, \quad n, k=1,2, \ldots, N$, and through direct calculation, we have

$$
\left(H, E_{k}\right)=0 \quad k=1,2, \ldots, N .
$$

The required result is obtained.
From theorem 2.2, let $|z|>\max \left\{\left|\lambda_{1}^{2}\right|,\left|\lambda_{2}^{2}\right|, \ldots,\left|\lambda_{N}^{2}\right|\right\}$, then

$$
\left(z-\lambda_{k}^{2}\right)^{-1}=\sum_{m=0}^{\infty} z^{-(m+1)} \lambda_{k}^{2 m}
$$

so that

$$
\begin{aligned}
& Q_{z}(\xi, \eta)=\sum_{m=0}^{\infty} z^{-(m+1)}\left\langle A^{2 m} \xi, \eta\right\rangle \\
& \sum_{k=1}^{N} \frac{\tilde{G}_{k}}{z-\lambda_{k}^{2}}=\sum_{m=0}^{\infty} \sum_{i+j=m-1} z^{-(m+1)}\left|\begin{array}{cc}
\left\langle A^{2 i+1} P, P\right\rangle & \left\langle A^{2 i} P, Q\right\rangle \\
\left\langle A^{2 j+2} P, Q\right\rangle & \left\langle A^{2 j+1} Q, Q\right\rangle
\end{array}\right|
\end{aligned}
$$

thus

$$
\sum_{k=1}^{N} \tilde{G}_{k} \lambda_{k}^{2 m}=\sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle A^{2 j-1} P, P\right\rangle & \left\langle A^{2 j} P, Q\right\rangle \\
\left\langle A^{2 m-2 j} P, Q\right\rangle & \left\langle A^{2 m-2 j+1} Q, Q\right\rangle
\end{array}\right| .
$$

Furthermore

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{1}{2} E_{k} \lambda_{k}^{2 m}=H_{m} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gather*}
H_{m}=\frac{1}{2}\left\langle A^{2 m+2} P, Q\right\rangle-\frac{1}{2}\left\langle A^{2 m+1} P, P\right\rangle+\frac{1}{2}\langle P, Q\rangle\left\langle A^{2 m} P, Q\right\rangle-\frac{1}{2}\langle P, Q\rangle\left\langle A^{2 m+1} Q, Q\right\rangle \\
+\frac{1}{2} \sum_{j=1}^{m} \left\lvert\, \begin{array}{cc}
\left\langle A^{2 J} P, Q\right\rangle & \left\langle A^{2 j-1} Q, Q\right\rangle \\
\left\langle A^{2 m-2 j+1} P, P\right\rangle & \left\langle A^{2 m-2 j} P, Q\right\rangle
\end{array} .\right. \tag{2.5}
\end{gather*}
$$

By theorem 2.3, we have

$$
\begin{align*}
\left(H_{m}, H_{n}\right) & =\left(\sum_{k=1}^{N} \frac{1}{2} E_{k} \lambda_{k}^{2 m}, \sum_{j=1}^{N} \frac{1}{2} E_{j} \lambda_{j}^{2 n}\right) \\
& =\sum_{k=1}^{N} \sum_{j=1}^{N} \frac{1}{4} \lambda_{k}^{2 m} \lambda_{j}^{2 n}\left(E_{k}, E_{j}\right)=0 \quad m, n=1,2,3, \ldots \tag{2.6}
\end{align*}
$$

By theorem 2.4, we have

$$
\begin{equation*}
\left(H, H_{m}\right)=0 \quad m=1,2, \ldots \tag{2.7}
\end{equation*}
$$

Theorem 2.5. The Hamiltonian system defined by (2.8) is finite-dimensional and completely integrable in the Liouville sense.
$p_{j t_{m}}=-\frac{\partial H_{m}}{\partial q_{j}}$

$$
\begin{equation*}
q_{j t_{m}}=\frac{\partial H_{m}}{\partial p_{j}} \tag{2.8}
\end{equation*}
$$

$$
m=1,2, \ldots, \quad j=1,2, \ldots, N
$$

where H_{m} is defined by (2.5).
Proof. From (2.4), we have

$$
\left(H_{m}, E_{k}\right)=0 \quad k=1,2, \ldots, N
$$

so that theorem 2.5 holds.

3. Relationship with the Levy equation hierarchy

Now, we consider the following eigenvalue problem:

$$
\left[\begin{array}{l}
y_{1} \tag{3.1}\\
y_{2}
\end{array}\right]_{x}=\left[\begin{array}{cc}
-\frac{1}{2}\left(\lambda^{2}+u+v\right) & \lambda u \\
-\lambda & \frac{1}{2}\left(\lambda^{2}+u+v\right)
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=M\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

where u and v are called potentials, λ is the eigenparameter.
Let $\partial=\partial / \partial x, \partial \partial^{-1}=\partial^{-1} \partial=1$, and the operators K and J take the following form:

$$
K=\left[\begin{array}{cc}
-(\partial u+u \partial) & -\partial^{2}-v \partial+\partial u \tag{3.2}\\
\partial^{2}+u \partial-\partial v & \partial v+v \partial
\end{array}\right] \quad J=\left[\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right] .
$$

We define Lenart's sequence $G_{j}, j=0,1,2, \ldots$, by means of the recursion relations
$K G_{j-1}=J G_{j} \quad j=0,1,2, \ldots, \quad G_{j}=\left[\begin{array}{l}c_{j} \\ b_{j}\end{array}\right] \quad G_{-1}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad j=1,2, \ldots$
Set

$$
\bar{N}_{j}=\left[\begin{array}{cc}
\frac{1}{2}\left(\lambda^{2}+u+v\right)\left(c_{j}-b_{j}\right)-\frac{1}{2}\left(c_{j x}-b_{j x}\right) & \lambda\left(u b_{j}-u c_{j}-b_{j x}\right) \tag{3.4}\\
\lambda\left(c_{j}-b_{j}\right) & -\frac{1}{2}\left(\lambda^{2}+u+v\right)\left(c_{j}-b_{j}\right)+\frac{1}{2}\left(c_{j x}-b_{j x}\right)
\end{array}\right] .
$$

Directly computing, we obtain

$$
\begin{align*}
& \bar{N}_{j x}+\bar{N}_{j} M-M \bar{N}_{j} \\
&= {\left[\begin{array}{cc}
-\frac{1}{2} & \lambda \\
0 & \frac{1}{2}
\end{array}\right]\left[\left(-\partial u-u \partial,-\partial^{2}-v \partial+\partial u\right) G_{j}-\lambda^{2}(0, \partial) G_{j}\right] } \\
&+\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\left(\partial^{2}+u \partial-\partial v, \partial v+v \partial\right) G_{j}-\lambda^{2}(\partial, 0) G_{j}\right] . \tag{3.5}
\end{align*}
$$

Further, we take

$$
N_{m}=\sum_{j=0}^{m} \bar{N}_{j-1} \lambda^{2 m-2 j} \quad m=0,1,2, \ldots
$$

From (3.3), (3.4) and (3.5), we have the following theorem.
Theorem.3.1. The m th-order Levy equation

$$
\left[\begin{array}{l}
u \tag{3.6}\\
v
\end{array}\right]_{t_{m}}=J G_{m}=K G_{m-1}
$$

is equivalent to the zero-curvature equation

$$
M_{t_{m}}=N_{m x}-\left[M, N_{m}\right]=N_{m x}+N_{m} M-M N_{m}
$$

which is the compatible condition for the following Lax pair:

$$
\begin{align*}
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]_{x}=M\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .} \tag{3.1}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]_{\mathrm{t}_{m}}=N_{m}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .} \tag{3.7}
\end{align*}
$$

Example. By (3.3)

$$
\begin{aligned}
G_{0}=\left[\begin{array}{c}
v \\
u
\end{array}\right] \quad J^{-1} & =\left[\begin{array}{cc}
0 & \partial^{-1} \\
\partial^{-1} & 0
\end{array}\right] \quad G_{1}=J^{-1} K G_{0}=\left[\begin{array}{c}
v_{x}-v^{2}+2 u v \\
-u_{x}+u^{2}-2 u v
\end{array}\right] \\
& {\left[\begin{array}{l}
u \\
v
\end{array}\right]_{t_{1}} }
\end{aligned}=\left[\begin{array}{c}
\left(-u_{x}+u^{2}-2 u v\right)_{x} \\
\left(v_{x}-v^{2}+2 u v\right)_{x}
\end{array}\right] .
$$

has the Lax pair

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]_{x}=M\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]_{t_{1}}=\left[\begin{array}{cc}
-\frac{1}{2}\left(\lambda^{2}+u+v\right)\left(\lambda^{2}-v+u\right)-\frac{1}{2}\left(v_{x}-u_{x}\right) & \lambda\left(u^{2}-u v-u_{x}+\lambda^{2} u\right) \\
-\lambda^{3}+\lambda(v-u) & \frac{1}{2}\left(\lambda^{2}+u+v\right)\left(u-v+\lambda^{2}\right)+\frac{1}{2}\left(v_{x}-u_{x}\right)
\end{array}\right]} \\
\\
\times\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
\end{gathered}
$$

Remark. From (3.2) and (3.6), let $\Phi=K J^{-1}$, then

$$
\Phi=\left[\begin{array}{cc}
-\partial-v+\partial u \partial^{-1} & -\partial u \partial^{-1}-u \\
\partial v \partial^{-1}+v & \partial+u-\partial v \partial^{-1}
\end{array}\right]
$$

is the hereditary operator of the Levy hierarchy [16], and we have
$\left[\begin{array}{l}u \\ v\end{array}\right]_{t_{m}}=K G_{m-1}=K J^{-1} J G_{m-1}=K J^{-1} K G_{m-2}=\ldots=\left(K J^{-1}\right)^{m} J G_{0}=\Phi^{m}\left[\begin{array}{l}u_{x} \\ v_{x}\end{array}\right]$
so that equation (3.6) is called an m th-order Levy equation.
Now, let λ_{j} and $\left(p_{j}, q_{j}\right)^{\mathrm{T}}$ be the eigenvalue and eigenfunction of (3.1) under certain boundary conditions, say, periodic or decaying to zero at infinity

$$
\left[\begin{array}{l}
p_{j} \tag{3.1}\\
q_{j}
\end{array}\right]_{x}=\left[\begin{array}{cc}
-\frac{1}{2}\left(\lambda_{j}^{2}+u+v\right) & \lambda_{j} u \\
-\lambda_{j} & \frac{1}{2}\left(\lambda_{j}^{2}+u+v\right)
\end{array}\right]\left[\begin{array}{l}
p_{j} \\
q_{j}
\end{array}\right] \quad j=1,2, \ldots, N .
$$

Then in the normal way we have [6]:

$$
\operatorname{grad} \lambda_{J}=\left[\begin{array}{c}
\delta \lambda_{j} / \delta u \\
\delta \lambda_{j} / \delta v
\end{array}\right]=\left[\begin{array}{c}
p_{j} q_{j}-\lambda_{j} q_{j}^{2} \\
p_{j} q_{j}
\end{array}\right]
$$

By (3.2), we obtain

$$
K\left[\begin{array}{c}
p_{j} q_{j}-\lambda_{j} q_{j}^{2} \tag{3.8}\\
p_{j} q_{j}
\end{array}\right]=\lambda_{j}^{2} J\left[\begin{array}{c}
p_{j} q_{j}-\lambda_{j} q_{j}^{2} \\
p_{j} q_{j}
\end{array}\right] \quad j=1,2, \ldots, N .
$$

Consider the following constraint [6]:

$$
G_{0}=\left[\begin{array}{c}
v \tag{3.9}\\
u
\end{array}\right]=\left[\begin{array}{c}
\langle P, Q\rangle-\langle A Q, Q\rangle \\
\langle P, Q\rangle
\end{array}\right] .
$$

From (3.3), (3.8) and (3.9), we have

$$
c_{j}=\left\langle A^{2 j} P, Q\right\rangle-\left\langle A^{2 j+1} Q, Q\right\rangle \quad b_{j}=\left\langle A^{2} P, Q\right\rangle \quad j=0,1,2, \ldots
$$

In the case of the constraint condition (3.9), the Lax pair (3.1), (3.7) of the m th-order Levy equation are nonlinearized respectively as follows:

$$
\begin{array}{lll}
p_{j x}=-\frac{\partial H}{\partial q_{j}} & q_{j x}=\frac{\partial H}{\partial p_{j}} & j=1,2, \ldots, N \\
p_{j t_{m}}=-\frac{\partial H_{m}}{\partial q_{j}} & q_{j t_{m}}=\frac{\partial H_{m}}{\partial p_{j}} & j=1,2, \ldots, N \tag{3.11}
\end{array}
$$

where H is defined by (1.2), H_{m} is defined by (2.5).
According to theorem 2.4 and equations (2.6), (2.7), the Hamiltonian canonical systems (3.10) and (3.11) are completely integrable in the Liouville sense; and (3.10) and (3.11) are compatible [17]; therefore the Hamiltonian phase g_{H}^{x} and $g_{H_{m}}^{t_{m}}$ are commutable. Now, we arbitrarily choose an initial value $(P(0,0), Q(0,0))^{\mathrm{T}}$; set

$$
\left[\begin{array}{l}
P\left(x, t_{m}\right) \tag{3.12}\\
Q\left(x, t_{m}\right)
\end{array}\right]=g_{H}^{x} g_{H_{m}}^{t_{m}}\left[\begin{array}{l}
P(0,0) \\
Q(0,0)
\end{array}\right]=g_{H_{m}}^{t_{m}} g_{H}^{x}\left[\begin{array}{l}
P(0,0) \\
Q(0,0)
\end{array}\right]
$$

then (3.12) is called an involutive solution of the Hamiltonian canonical systems (3.10) and (3.11). We thus obtain the following theorem.

Theorem 3.2. Suppose $\left(P\left(x, t_{m}\right), Q\left(x, t_{m}\right)\right)^{T}$ is an involutive solution of (3.10) and (3.11), then

$$
\begin{aligned}
& v=\left\langle P\left(x, t_{m}\right), Q\left(x, t_{m}\right)\right\rangle-\left\langle A Q\left(x, t_{m}\right), Q\left(x, t_{m}\right)\right\rangle \\
& u=\left\langle P\left(x, t_{m}\right), Q\left(x, t_{m}\right)\right\rangle
\end{aligned}
$$

becomes the solution of the m th-order Levy equation (3.6).

References

[1] Flaschka H 1983 Kyoto Japan (Singapore: World Scientific) pp 219-40
[2] Tu Guizhang 1989 Sci. Sinica 7701
[3] Cewen Cao and Xianguo Geng 1991 J. Math. Phys. 322323
[4] Cao C and Geng X 1990 Nonlinear Physics, Research Reports in Physics ed C Gu et al (Berlin: Springer) pp 68-78
[5] Cao C 1991 A classical integrable system and the involutive representation of solutions of the KdV equation Acta Math. Sin. 7 pp 216-23
[6] Cao C 1990 Sci. China A 33528
[7] Cao C 1990 Acta Math. Sin. 635
[8] Cao C and Geng X 1990 J. Phys. A: Math. Gen. 234117
[9] Zhang Baocai and Gu Zhuquan 1991 J. Phys. A: Math. Gen. 24963
[10] Gu Zhuquan 1991 J. Math. Phys. 321531
[11] Gu Zhuquan 1990 J. Math. Phys. 311374
[12] Gu Zhuquan 1991 Chin. Sci. Bull. 361683
[13] Zhang Baocai and Gu Zhuquan A C Neumann system and the involutive representation of the solution of hierarchy for the coupled nonlinear wave equation Preprint
[14] Zhang Baocai The mixed nonlinear Schrödinger equation and a classical integrable system of complex form Preprint
[15] Levy D and Neugebauer G 1984 Phys. Lett. 102A 1
[16] Zhu Guocheng and Li yishen 1986 J. China Univ. Sci. Technol. 181
[17] Arnold V I 1978 Mathematical Methods of Classical Mechanics (Berlin: Springer)

